Quantitative Chemistry

Reading: pages 41-45

Know	ledge
------	-------

1. How is formula mass calculated?	
2. What is the formula mass of CH ₄	NH ₄ Cl
3. What is a 'mole'?	
4. How many atoms or molecules are there in a mole?	
5. What does the term 'limiting reactant' mean?	
6. What happens to mass during a chemical reaction?	
7. What do the symbols (s), (l), (g) and (aq) mean?	
8. What is the equation linking mass, molar mass and mole	s?
9. How many cm³ are there in 1dm³?	
10. What is the equation linking mass, volume and concent	tration?
<u>Application</u>	
1. What is the % mass of calcium in calcium chloride ($CaCl_2$)
2. Work out the mass of 5 moles of NaF.	
3. If you have 20g of hydrogen gas (H_2) , how many moles d	o you have?
4. For the reaction below, calculate the mass of potassium	needed to make 50g of potassium lodide
$2K + I_2$	→ 2KI

ome students carr	ried out the following e	experiment :		
	Figure 1			
	T-A			
Bubbles of carbon dioxide	Conical flask			
carbon dioxide	40 cm³ hydro			
0:00	Balance			
alance the equation	on		() + H ₂ O _()	+ CO ₂ ()
Balance the equation	CaCO _{3()} +	HCl() → CaCl₂	() + H ₂ O _()	+ CO ₂ ()
Balance the equation	$CaCO_3$ () +on	HCl() → CaCl₂	() + H ₂ O _()	+ CO ₂ ()
Salance the equation and state symbols Why was cotton wo	CaCO ₃₍₎ + on to the brackets ool put into the conical	HCl() → CaCl₂ flask?		+ CO ₂ ()
ralance the equation and state symbols. Why was cotton working the students means and state symbols.	CaCO ₃₍₎ + to the brackets pol put into the conical	HCl() → CaCl₂ flask?	hown below:	
Salance the equation Add state symbols Why was cotton work The students mea	CaCO ₃₍₎ + to the brackets pol put into the conical	HCl()→ CaCl₂ flask? ass. Their results are s	hown below:	mean
The students mea	CaCO ₃₍₎ + to the brackets pol put into the conical	HCl()→ CaCl₂ flask? ass. Their results are s 2 8.2	hown below:	
Ralance the equation and state symbols Why was cotton work The students mean repeat Mass lost (g)	CaCO ₃₍₎ + to the brackets pol put into the conical	HCl()→ CaCl₂ flask? ass. Their results are s 2 8.2	hown below:	mean
The students mea	CaCO ₃₍₎ + to the brackets pol put into the conical	HCl()→ CaCl₂ flask? ass. Their results are s 2 8.2	hown below:	mean
Ralance the equation and state symbols Why was cotton work The students mean repeat Mass lost (g)	CaCO ₃₍₎ + to the brackets pol put into the conical	HCl()→ CaCl₂ flask? ass. Their results are s 2 8.2	hown below:	mean
Ralance the equation and state symbols Why was cotton work The students mean repeat Mass lost (g)	CaCO ₃₍₎ + to the brackets pol put into the conical	HCl()→ CaCl₂ flask? ass. Their results are s 2 8.2	hown below:	mean
The students mea Repeat Mass lost (g) culate the uncerta	CaCO ₃₍₎ + to the brackets pol put into the conical	HCl() → CaCl₂ flask? ass. Their results are s 2 8.2 sults.	hown below:	mean 8.4
Repeat Mass lost (g) Culate the uncerta	CaCO ₃₍₎ + to the brackets pol put into the conical	HCl() → CaCl₂ flask? ass. Their results are s 2 8.2 sults.	hown below: 3 8.3	mean 8.4